激光元件外,还有一点便是需要激光发生器消耗巨量的电量去点火,形成聚变反应。
也就是说,即使是形成核聚变反应还不够,还必须让核聚变反应产生的能量,必须大于激光发生器点火消耗的能量。
因此,这里就不得不提核聚变能量的增益因子——“q值”了。
把“输出能量/输入能量”的比值叫做“q值”,q大于1就意味着“输出大于输入”,算上成本,如果是烧锅炉的汽轮机的话,“热效率”大概在40%-70%,再算上一些其它的损耗,大致上可以认为q=2.5是一个真正的成本价。
也就是说:
q>0时,实现聚变反应,是人类聚变反应堆原理突破的标志。
q>1.0时,输出能量大于输入能量,这是“盈亏平衡”的标志。
q>2.5,输出能量转化为电能后仍大于输入能量,这是核聚变“实用化”突破的真正标志。
q>50,则是输出能量转化为电能后可实现盈利,可以进行“商业化”的标志。
因此,高能物理界常有一句俗语:“不谈q值的可控核聚变,其实都是在耍流氓。”
而陈晨这座惯性约束聚变反应堆此时的q值,已经被刷到了20之多,维持成本早就绰绰有余了。
唯一遗憾的是,陈晨这边并没有采用“烧开水”的方式去发电,因为地底空间不足,无法承受大量的热气排放,因此陈晨采用的是电能转化效率不高的“磁流体发电”技术。
这个技术并非是《极乐空间》位面内的技术,而是现实中便已经有的技术之一,而其原理也是十分简单。
反应堆中的微型太阳,其实便是被磁场约束住的高温等离子体,而等离子体也是带正电粒子与带负电粒子组成的带电粒子系统,根据洛伦兹力,只要用磁流体装置把正负电荷的粒子