笔奇阁

繁体版 简体版
笔奇阁 > 走进不科学 > 第三百一十二章 艾维琳的直觉(下)

第三百一十二章 艾维琳的直觉(下)(4 / 9)

数能够用初等数论解决的数学难题之一,理论上在1800年其实就可以破解出来了。

当然了。

以前那个极少数的例子不包括哥猜——运气好的话,每年你都能看到上千条哥德巴赫猜想的初等证明从国内外的民科手中诞生.......

不过就像物理学可以分成经典物理和更微观的量子物理一样。

j. h. e. ...也就是科恩证明出来的完全平方项只是某个范围内的答案,比较公认的是前二十万个斐波那契数这个范围。

如果将范围无限扩大,那么还是可以再找到几个完全平方项的。

比如说第四个数是884358447525575649,大概在1056412078的位置。

再往后还有6.1613e+030,9.9692e+030等等......

这种同样是属于理论上的研究范围,对于目前的艾维琳来说,使用科恩的解题方式就足够了。

随后徐云接过纸和笔,一边说一边演算了起来:

“首先我们先定义一个卢卡斯数列,也就是斐波那契数列,xn=x(n-1)+x(n-2),不过x属于n,n≥3......”

“接着把定义域由自然数集推广到整数集........,可得2f_{m+n}=f_{m}l_{n}+f_{n}l_{m}......”

“令m=1,可得2f_{n+1}=f_{1}l_{n}+f_{n}l_{1}....从而2l_{m+n}=5f_{m}f_{n}+l_{n}l_{m}......”

“然后这样进进出出(数学归纳法).....加速减速(二次剩余)......再把它磨润一点(欧拉判别法),从这个位置摸两下(辗转相除法)......然后九浅一深(模周期数列)..

『加入书签,方便阅读』