笔奇阁

繁体版 简体版
笔奇阁 > 走进不科学 > 第六百二十七章 瞧瞧我们发现了什么?(下)

第六百二十七章 瞧瞧我们发现了什么?(下)(8 / 9)

2矩阵d1/2(α,βγ)上就可以了。」

「根据su(2)群和so(3)群的定义,so(3):={o∈gl(3,r)|oto=13,det(o)=1},su(2):={u∈gl(2,c)|u??u=12,det(u)=1}。」

「接着找一个三维矢量vv=(v1,v2,v3),可以利用泡利矩阵将其映射成一个22无迹厄米矩阵,即vv→rr=viσi=(v3v1??iv2v1+iv2??v3),这个映射的逆映射为vi=12tr[σirr],并且有det(rr)=??|vv|2,以及12tr(rr2)=|vv|2......」

「这个无迹厄米矩阵可以表示su(2)群上的代数,那么su(2)群在这个代数上的伴随作用为rr=urru??.其中u∈su(2)......」

「那么诱导出一个在三维实矢量空间的表示,v′i=12tr(σirr′)=12tr(σiuσju??)vj,v′i=rji(u)vj,因此,rji(u)=12tr(σiuσju??).......」

「如此一来,只要证明r(u)∈so(3)就行了,我们的思路是......」

看着洋洋洒洒大书特书的朱洪元,徐云的脸上也忍不住露出了一丝微妙。

这算是巧合吗?

要知道。

后世华夏量子场论中有关群论在同态映射方面的证明,主要的「操刀者」正是朱洪元来着.....

不过朱洪元编译那套书的时间是在八十年代中期,如今看来很明显,这又是一个因为国际封锁而被埋没的成果。

十多分钟后。

在众人的注视下,朱洪元写下了最后一段话:

「根据核空间的定义,这个同态映射的核为h={u∈su(2)

『加入书签,方便阅读』